Tree Algebras: an Algebraic Axiomatization of Intertwining Vertex Operators
نویسندگان
چکیده
We describe a completely algebraic axiom system for intertwining operators of vertex algebra modules, using algebraic flat connections, thus formulating the concept of a tree algebra. Using the Riemann-Hilbert correspondence, we further prove that a vertex tensor category in the sense of Huang and Lepowsky gives rise to a tree algebra over C. We also show that the chiral WZW model of a simply connected simple compact Lie group gives rise to a tree algebra over Q.
منابع مشابه
Generalized Rationality and a “Jacobi Identity” for Intertwining Operator Algebras
We prove a generalized rationality property and a new identity that we call the “Jacobi identity” for intertwining operator algebras. Most of the main properties of genus-zero conformal field theories, including the main properties of vertex operator algebras, modules, intertwining operators, Verlinde algebras, and fusing and braiding matrices, are incorporated into this identity. Together with...
متن کاملWeak modules and logarithmic intertwining operators for vertex operator algebras
We consider a class of weak modules for vertex operator algebras that we call logarithmic modules. We also construct nontrivial examples of intertwining operators between certain logarithmic modules for the Virasoro vertex operator algebra. At the end we speculate about some possible logarithmic intertwiners at the level c = 0. Introduction This work is an attempt to explain an algebraic reform...
متن کاملA Jacobi identity for intertwining operator algebras
We find a Jacobi identity for intertwining operator algebras. Most of the main properties of genus-zero conformal field theories, including the main properties of vertex operator algebras, modules, intertwining operators, Verlinde algebras, and fusing and braiding matrices, are incorporated into this identity. We prove that intertwining operators for a suitable vertex operator algebra satisfy t...
متن کاملOn intertwining operators and finite automorphism groups of vertex operator algebras
Let V be a simple vertex operator algebra and G a finite automorphism group. We give a construction of intertwining operators for irreducible V G-modules which occur as submodules of irreducible V -modules by using intertwining operators for V . We also determine some fusion rules for a vertex operator algebra as an application.
متن کاملVertex-algebraic Structure of the Principal Subspaces of Level One Modules for the Untwisted Affine Lie Algebras
Generalizing some of our earlier work, we prove natural presentations of the principal subspaces of the level one standard modules for the untwisted affine Lie algebras of types A, D and E, and also of certain related spaces. As a consequence, we obtain a canonical complete set of recursions (q-difference equations) for the (multi-)graded dimensions of these spaces, and we derive their graded d...
متن کامل